Identifying Characteristics of Air Pollutants Associated with Heart Disease Indicators

February 26, 2009

PM and Cardiovascular Health

Proposed Biological Mechanism

Objective

Objective of Study *:

Indentify PM characteristics associated with changes in three classes of biomarkers of cellular injury

*Delfino, R.J. Staimer, R. Tjoa, T. Polidori, A. Arhami, M. Gillen, D.L. Kleinman, M.R., Vazairi, N.D., Longhurst, Zaldivar, F. Sioutas, C. "Circulating Biomarkers of inflammation, Antioxidant Activity, and Platelet Activation Are Associated with Primary Combustion Aerosols in Subjects with Coronary Artery

Disease".Environmental Health Perspectives 116:898-906 (2008) ARB Contract 03-329

Methods

- 29 elderly adults in Southern California with coronary artery disease
- Blood analyzed for three classes of biomarkers
- PM characterization
 - PM mass for different size fractions
 - Quasi-ultrafine (≤0.25μm)
 - "Fine" (0.25-2.5μm)
 - Coarse (10-2.5μm)
 - Particle number
 - PM source: primary vs. secondary
 - PM origin: indoor vs. outdoor

Results

Changes in biomarker levels most consistently associated with:

- Ultrafine PM (≤0.25μm)
- Primary combustion PM (elemental and organic carbon)
- Particle number
- PM2.5 components originating outdoors

Conclusion

- Traffic-related pollutants can lead to changes in biomarker levels
 - -Ultrafine PM, primary organic and elemental carbon
- Exposure to these components of PM may lead to acute adverse health outcomes in elderly people with cardiovascular disease

